The molecular mechanism of lipid monolayer collapse.

نویسندگان

  • Svetlana Baoukina
  • Luca Monticelli
  • H Jelger Risselada
  • Siewert J Marrink
  • D Peter Tieleman
چکیده

Lipid monolayers at an air-water interface can be compressed laterally and reach high surface density. Beyond a certain threshold, they become unstable and collapse. Lipid monolayer collapse plays an important role in the regulation of surface tension at the air-liquid interface in the lungs. Although the structures of lipid aggregates formed upon collapse can be characterized experimentally, the mechanism leading to these structures is not fully understood. We investigate the molecular mechanism of monolayer collapse using molecular dynamics simulations. Upon lateral compression, the collapse begins with buckling of the monolayer, followed by folding of the buckle into a bilayer in the water phase. Folding leads to an increase in the monolayer surface tension, which reaches the equilibrium spreading value. Immediately after their formation, the bilayer folds have a flat semielliptical shape, in agreement with theoretical predictions. The folds undergo further transformation and form either flat circular bilayers or vesicles. The transformation pathway depends on macroscopic parameters of the system: the bending modulus, the line tension at the monolayer-bilayer connection, and the line tension at the bilayer perimeter. These parameters are determined by the system composition and temperature. Coexistence of the monolayer with lipid aggregates is favorable at lower tensions of the monolayer-bilayer connection. Transformation into a vesicle reduces the energy of the fold perimeter and is facilitated for softer bilayers, e.g., those with a higher content of unsaturated lipids, or at higher temperatures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of hexadecaprenol on molecular organisation and transport properties of model membranes.

The Langmuir monolayer technique and voltammetric analysis were used to investigate the properties of model lipid membranes prepared from dioleoylphosphatidylcholine (DOPC), hexadecaprenol (C80), and their mixtures. Surface pressure-molecular area isotherms, current-voltage characteristics, and membrane conductance-temperature were measured. Molecular area isobars, specific molecular areas, exc...

متن کامل

C₆₀ fullerene promotes lung monolayer collapse.

Airborne nanometre-sized pollutants are responsible for various respiratory diseases. Such pollutants can reach the gas-exchange surface in the alveoli, which is lined with a monolayer of lung surfactant. The relationship between physiological effects of pollutants and molecular-level interactions is largely unknown. Here, we determine the effects of carbon nanoparticles on the properties of a ...

متن کامل

Collapse of a lipid-coated nanobubble and subsequent liposome formation

We investigate the collapse of a lipid-coated nanobubble and subsequent formation of a lipid vesicle by coarse grained molecular dynamics simulations. A spherical nanobubble coated with a phospholipid monolayer in water is a model of an aqueous dispersion of phospholipids under negative pressure during sonication. When subjected to a positive pressure, the bubble shape deforms into an irregular...

متن کامل

Effect of metal ions on monolayer collapses.

A Langmuir monolayer of stearic acid on pure water and in the presence of certain divalent metal ions such as Cd and Pb at pH approximately 6.5 of the subphase water collapses at constant area, while for other divalent ions such as Mg, Co, Zn, and Mn at the same subphase pH the monolayer collapses nearly at constant pressure. Films of stearic acid with Cd, Pb, Mn, and Co in the subphase (at pH ...

متن کامل

Uranyl Acetate Induces Oxidative Stress and Mitochondrial Membrane potential collapse in the Human Dermal Fibroblast Primary Cells

   Cytotoxicity of depleted uranium, as a byproduct of military has been came to spotlight in recent decades. DU is known as a chemical rather than radioactive hazard and efforts to illustrating its mechanism is undergo, but the precise complete molecular mechanisms are still unclear. Recent studies showed that uranium induces biological changes in many different target tissues, such as the kid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 105 31  شماره 

صفحات  -

تاریخ انتشار 2008